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The nature of the r— r* transitions in the spectra of quinoxaline 1-N-oxides as compared
with unoxidized quinoxalines was examined on the basis of an experimental study and cal-
culation by the Pariser—Parr—Pople configurational interaction method.

We have measured the UV spectra of quinoxaline 1-N-oxides (I-IX) in n-heptane, ethanol, and water.
The electronic structures and spectra were calculated for I-V by the Pariser—Parr—Pople method with
allowance for interaction of nine singly excited configurations.
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Three r— r* transitions at 316 nm (£=5840), 280 nm (£=2600), and 232 nm (&=26,700), which are of
the 1Lb, 1La, and 1Bb types, respectively, according to the Platte classification [1-3], were isolated in the
electronic spectrum of quinoxaline in nonpolar media at > 210 nm.
The 1Lb and 1La bands are overlapped to a considerable degree. In
addition to the absorption regions characteristic for quinoxaline, the
spectrum of quinoxaline 1-N-oxide (I) in heptane (see Fig. 1 and Ta-
ble 1) contain bands at 248-254 nm (e=13,200~16,000) and 347 nm
(¢=9100). Their high intensities make it possible to assign these
bands to r— r* transitions. As the polarity of the solvent increases,
both bands undergo a hypsochromic shift and are not observed in the
spectrum of an aqueous solution. It is known [4] that a hypsochromic
shift as the polarity of the medium increases is a characteristic prop-
erty of the r— n* bands of aromatic N-oxides. This is associated
with charge transfer from the oxygen atom of the N—~O group to the
heteroring on passing from the ground state to the excited states.
When heptane is replaced by water, a band appears at 290 nm (e=
5000) in the spectrum of I, whereas the absorption at 320-337 nm is
retained and undergoes only a certain decrease in the intensity and
weakening of the vibrational structure. It might be assumed that the
absorption at 300-337 nm in heptane is due to two overlapped bands.
Thus the spectrum of quinoxaline 1-N-oxide in the investigated re-
gion consists of five #— r* bands, which are numbered in Table 1 in
order of increasing energy. The assignment of the bands in the spec-
tra of 1-N-oxides of monosubstituted quinoxalines (II-VII) were sim-

Fig. 1. UV Spectra of quin~-
oxaline (A) and its 1-N-oxide
(B) in n-heptane (—) and
water (==-),
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TABLE 1. UV Spectra of Quinoxaline 1-N-Oxide in n-Heptane

Com- 7 - @* bands, Amax, nm (log &) e
pound N | 2.3 i 1 : 5
I | 347(396) | 337 (3,88) 031 (404) 524 (399) | 234 (112) = 238 (4,46)
; 318 (398) 312 (389) | 248 (420) | 236 (4,45)
11 | 338(3,80) 323 (396) 311 (383) | 255 (4.46) | 247 (4,49)
| | | 242 (449)
1 | 351 (377) 335 (3,82) 321 (399) | 255 (4,34) | 244 (4,60)
| 310 (390) . |
IV | 367 (314) | 346 (3,75) 331 (3,87) | 952 (4,49) | 240 (4,34)
v | 354 (3,69) 338 (3,73) 324 (3,60) U247 (4,54) | 242 (447)
. i a1l {399) 299 (3.88) [ 91 (421)
; 200 (372) 280 (3.56) ‘_
VI | 357 (349) | 340 (3,64) 325 (3,85) 315 (381) | 268 (437) ¢ 242 (451)
VI | 365(359) | 345 (394) 331 (397) 320 (3.84) | 264 (430) . 242 (4.41)
; | 257 (439) | 237 (4,32)
i | i !

TABLE 2. Vibrational Structure of the Overlapped Bands in the
Spectra of Quinoxaline and Its 1-N-Oxide {cm™}

Quinoxaline [3] ] Quinoxaline 1-N-oxide
Transitions ; 1 ; T
v Ay | A"v . v i A'v i Ay
e R
00 | 31800 t {20670 | i
0—i 23588 o 1300 t 750 3030‘288100 g0 60
| 33500 | I 31480 | ‘ ; )
o-2 1 oae M0 70O g5y 0 SO ST
i }

TABLE 3. Calculated and Experimentally Observed Spectra of
Quinoxaline 1-N-oxides

Com- g o Exp Calc.
pound | tramsitions AE eV | e AE eV | f
i
1 1 i 3,58 ] 9100 3,55 0,33
2 370 9800 379 0.67
3* H 4,28 (.28
4 5,00 16900 4,98 0,73
3 5,26 29000 5,26 .81
{1 1 3,61 0,20
2 3,83 S100 3,76 0,08
3* 4,26 0,23
4 4,80 29000 4,87 0.72
> 5,13 31000 5,20 0,74
I 1* 3,60 0,16
2 3,53 9800 3,81 0,06
3* 4,36 0.34
4 4,81 22000 4,99 0.80
3 5,09 40000 - 5.28 .88
v 1 3,38 1460 3,61 0.21
3 3,58 7400 3,76 0,08
3% 4,26 0.23
4 4,93 31000 4,86 0,82
3 5,17 22000 5,20 0,76
\4 1#* 3,60 0,16
2 3,50 4000 3,81 0,08
3 4,29 5200 4,36 033
4 5,03 35000 4,99 0,71
5 5,13 26000 5,28 0,67

* The 2 band is overlapped in the experimental spectrum.

ilarly assigned. The spectra of 2- and 3-aminoquinoxaline 1-N-oxides (VIII and IX) in heptane were not
measured because of their exceptionally low solubilities,

The overlapped 2 and 3 bands in the specira of the N-oxides are similar to the ILb and 1La hands in
the spectra of the corresponding unoxidized quinoxalines [3] with respect to their position, intensity, char-
acter of their vibrational structure, and substitution effects. Thus two vibrations with A'»=1190 em™! and
Aty =570-650 cm'i, which are close to the two vibrational quanta in the spectrum of quinoxaline (Aty=
1300 cm™! and A"y =700-750 em™1), appear in the spectrum of I (see Table 2). Inasmuch as the vibrational
structure of the overlapped bands of quinoxaline are related to the long-wave 1Lb band [3], the fine struc-
ture of the overlapped 2 and 3 bands in the spectrum of I can be assigned to the 2 band. Overlapping of the
1Lb and 1La bands is weakened in the spectrum of 2-methoxy-quinoxaline [3] as compared with quinoxaline.
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TABLE 4. Contributions of the AC of the Oxygen Atom of the N—O
Group to the MO of Quinoxaline 1-N-Oxide*

Com~ | [ o i
pglg':d » m—2 f -1 ! m ' m+1 m+3
i | : L .
I 0,012 ! 0,155 0,432 i 0,185 | 0016
no 0,104 | 0,030 0,476 ! 0,170 | 0018
or 0,110 0,079 { 0,415 | 0,185 i 0018
o 0,108 L0088 ! 0,476 | 0,169 {0018
\ 0,109 { 0,081 ; 0,416 j 0,185 [ 0pI8
* For I-V, the contribution of the AO of the oxygen atom to the MO
is ¥5,4,NO~ 0, ‘

TABLE 5. Contributions of the AO of the Heteroring (¢;) to the MO
of Quinoxaline, 2-Chloroguinoxaline (\Ifj), and Their 1-N-Oxides

(¥;NO)
| Quinoxalines . Quinoxaline N-oxides
X AOQ = ‘ ‘ P
. | MO | 3¢ | MO | =
H 56,78 m 0,650 m-—1 0,647
2,3,6,7,9,10 m—1 0,996 m—2 0,965
1,2,34 m+1 0,746 m-+1 0,586
5,6,7,8,9,10 m+2 0,998 m+2 0,996
2,36,7,9,10 m-+3 0,892 m+3 0,887
2-Cl 58,78 m 0,718 m—2 0,726
2,3,6,7.9,10 m—1 0990 | m—1 0,867
1,2,3,4,5,8 m+1 0,870 m-+1 0,713
2,3,6,7,9,10 m+2 0,988 m+2 0,985
5,6,7,8,9,10 m+3 0,826 m+3 0,882

TABLE 6. Predominant Configurations in the #— r* Transitions of
Quinoxaline 1-N-Oxides

ﬁ'}ggéglme | Monosubstituted quinoxaline 1-N-oxide
Configuration |rransi- - | transi- | T

* ltions ] tions n }omo o} v
7 S S

Y, NO P, NO 1 | 0,720 I 1 ! 0,804 l 0,689 l 0,804 | 0,602
W, NOLW, NO 3 0,674 9 | 0483 | 0263 | 0506 | 0260
W, _NoL gL NO | 9 0,556 I 3 0608 | 0557 | 0629 | 0524
Y, N0, [ ,NO 4 0,487 4 0585 | 0523 | 0585 | 0l
wonoswylNe |5 | 05 B O77L | 060 | 0774 | 059

The introduction of a methoxy group into the 3 position of quinoxaline 1-N-oxide has a similar effect on

the relative position of the 2 and 3 bands. Absorption maxima at 280~300 nm, which can be assigned to the
3 band, appear in the spectrum of V. Like the 1Lb band of the unoxidized base [3], the 2 band of quinoxaline
1-N-oxide is shifted to the long-wave region under the influence of substitution in the pyrazine ring, and
the magnitude of the bathochromic shift in both series of compounds increases as the electron-donor prop-
erties of the substituent increase. The 5 band of quinoxaline 1-N-oxide is only slightly sensitive to the ef-
fects of the medium and substitution. With respect to these features and also with respect to its intensity
and position in the spectrum, it displays a similarity to the 1B}, band of quinoxaline. The 1 and 4 bands do
not have analogies in unoxidized quinoxalines. - They are easily identified from the characteristic hypso-
chromic shift as the polarity of the solvent increases. A 4 band is observed in the spectra of all of the in~
vestigated compounds in heptane. The intensity of the 1 band in the spectra of 1-N-oxides of substituted
quinoxalines decreases, and it is probably overlapped by the 2 band in the spectra of I, TIT, and V,

In agreement with the experimental observations, the calculation reveals five m— r* transitions > 210
nm (see Table 3). The calculated energies of the transitions in all of the compounds are in satisfactory
agreement with the observed values. The AEeyy value of the 3 band (4.29 eV) found from the spectrum of
3-methoxyquinoxaline 1-N-oxide (V) is in satisfactory agreement with the calculated energy of the third
electronic transition (AE, =4.36 eV). A comparison of the results of the calculation of the electronic
structures and spectra of quinoxaline and its ‘monosubstifuted derivatives [5] with the values for the cor-
responding N-oxides showed that 1-N-oxidation leads to the appearance of an additional bonding molecular
orbital (MO), whereas the number of antibonding MO does not change. From an analysis of the coefficients
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Fig. 2, Molecular diagrams of the ground (N) and first
excited (V) states of quinoxaline 1-N-oxides (I-V),

of the atomic orbital (AO) of the oxygen atom of the N—O group to the MO of quinoxaline 1-N-oxides {(Ta~
ble 4) it follows that ~80% of its contribution is distributed among three higher occupied and three lower
vacant MO. The contribution of the AO of the oxygen atom to the higher occupied MO of the investigated
N-oxides (¥, NO) is 40~50%, and this MO consequently cannot have an analog in the unoxidized systems.
The AO of the quinoxaline two-membered ring that make the maximum contributions to the MO of quin—
oxalines and their 1-N-oxides are presented in Table 5. It is apparent from these data that the bonding
MO of quinoxaline 1-N-oxide (‘I'm_INO and \I'm_ZNO) display a similarity to the bonding MO of quinoxaline
(¥ and ¥4y, 4, respectively). Thus the composition of the \Ifm_zNO and ¥, MO includes a 65% contribu-~
tion from the AO of the benzene ring. The AO of the carbon bridge (Cy, Cyy) and the carbon atoms in the
2, 3, 6 and 7 positions of the two-ring system make the predominant contribution to the 'I'm_zNO and ¥ 4
MO (96.5 and 99.6%). With respect to the AO contributions, there is an analogy between the three lower
vacant MO of quinoxaline (¥p4y, ¥4y, and ¥pyiq) and its 1-N-oxide (¥ 4NO, ¥ . NO_and #,,,NO). The
parallelism in the MO is retained for monosubstituted guinoxalines and their 1-N-oxides, but the sequence
-of the corresponding (with respect to the AO contributions) bonding MO of the N-oxides and the unoxidized
bases changes. In the case of the chloro derivatives it was shown that the ¥y, and ¥, ; MO of 2-substi-
tuted quinoxalines are similar to the ¥, _,NO and ¥,  NO MO of the 1-N-oxides, respectively.
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TABLE 7. Coulombic and Resonance Parameters

Atom Vgqr €V i Bond (R Bgp- €V
| . i
i 3

C | 1L13 | (C—C)ring 139 | —23
Zti_,,_ ©) i%% (C—N)ring 1,36 —2,30
o E(g; it | N-O 1,27 ~2,60

N 14,38 C—O(CHz) 1,50 -2
Cl | oms |-l ? 170 —2',%?

TABLE 8. UV Spectra of Quinoxaline 1-N-Oxides in Ethanol and
Water*

gg;“n& Anaxe nm (log &)

Pl 841 (3.84),324 (3,93), 238 (4,53)
339 (3,88), 325 (3,92), 290 (3,70}, 236 (4,62)
I | 341 (377}, 322 (3.95), 246 (4,66)
343 (3.88), 328—329 (3,98), ~ 298, 244 (4,76)
11 | 350 (3.77), 334 (3,82), 321 (3,98), 310 (3,87), 296 (3,73), 246 (4,66), 244 (4,64)
349 (3,92). 335 (3.84), 321 (3.87). 310 (3.82), 290 (3.77), 244 (4,68)
IV | 355 (3:81).341 {3.83). 325 {3.94), 245 (4,69) :
352 (3,82), 340 (3.86), 322 (3.95), ~ 290, 243 (4,71)
Vv | 354 {3,72). 340 (3.74), 306 (3,80}, 296 (3.84), 288 {3,78), 246 (4,47), 222 (4,33)
35?4(3337)0) ) 343 (3.73), 303 (3,72), 294 (3.75), 281--275 (3,77}, 945 (4,40), 222
VI | 342 (3,71), 325 (3,84), 315 (3,82), 246 (4,53) '
341 (3.76), 827 (3.81), ~ 300, 275 (3,77), 245 (4,40), 222 (4,38)
VI | 344 (3,94}, 332 (3.98). 250 (4,49)
344 (3,94}, 333 (3.98), 250 (4.63)
VHI | 379 (3.77), 315307 (3,55), 252 (4,62)
369 (3,77), 313—304 (3,60), 248 (4,64)
IX | 370 (3.68),312 (3,72), 301 (3,79), 256 (4,34), 234 (4,41)
371 (3.76), 311 (3,54), 300 (3.68), 256 (4,31}, 232 (4,10)

* The upper line pertains to spectra of 96% ethanol solutions, and
the lower line pertains to water solutions.

It is known [5] that configurations corresponding to the one~electron transitions ¥y, ;= ¥y g, ¥y~
T+, and o= ¥y, respectively, predominate in the 1Lb, 1La, and !By, transitions of quinoxaline. The
configurations that make the maximum contributions to the first five excited states of quinoxaline 1~N-
oxides are presented in Table 6. If follows from the calculations that the second and third electron tran-
sitions in quinoxaline 1-N~oxide are due mainly to the ‘Ifm_ZNO—' T +NO and ‘Ifm._iNO—"IfmﬂNO con-
figurations, respectively. Taking into account the analogy in the MO, one may conclude that the ¥¢,_
Wpniq and ¥y =¥y, configurations responsible for the Ly, and 'Ly bands correspond to these two con-
figurations in the spectrum of quinoxaline. A comparative examination of the data on the configurational
interaction with allowance for the analogy in the corresponding MO for chloro- and methoxy-quinoxalines
and their 1-N-oxides leads to a similar conclusion. Thus it follows from both the theoretical analysis and
from the experimental data that two transitions (2 and 3) in the spectra of quinoxaline 1-N-oxides are sim-
ilar in nature to the 1Ly and !L; transitions in unoxidized quinoxalines. The predominant configurations of
the three remaining {ransitions in the investigated compounds are associated with‘\ImeO MO, which does
not have an analogy in the unoxidized molecules. In the experiments, these data correspond to the fact
that the 1 and 4 bands of the N-oxides do not have analogies in the spectra of quinoxalines. In addition, it
follows from the calculations that the 5 band in the spectrum of quinoxaline 1-N-oxide is located in the
same energy range as the iBb band of quinoxaline.

A calculation of the molecular diagrams of the ground state and the first excited state (Fig. 2) showed
that in all of the»examinéd compounds the low-energy transition is accompanied by considerable transifer
of r-electron charge from the oxygen atom of the N~-O group to the heteroring. This effect corresponds
to the experimentally observed hysochromic shift of the 1 band as the polarity of the solvent increases.

EXPERIMENTAL

The electronic spectra were calculated by Pariser—Parr—Pople configurational interaction method
with a program composed in conformity with the data in [6]. The coulombic and resonance parameters
used in these calculations are presented in Table 7. The one-center integrals for the atoms making up the
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N—O bond were close to those described in [4]. The two-center integrals were calculated from the
Mataga —Nishimoto formula [7]. The methyl group in IV and V was examined with respect to an inductive
model, according to which it lowers the potential of the atom bonded to it [8].

The UV spectra were measured with an EPS-3 spectrophotometer. The authors sincerely thank A,
S. Elina for kindly providing us with the compounds.
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